

Origins of Strength from Dislocation Dynamics

Vasily Bulatov and Tom Arsenlis

Chemistry and Materials Science Lawrence Livermore National Laboratory

ParaDiS Team: G. Hommes, W. Cai (Stanford), M. Rhee, M. Tang, M.

Hiratani

Experiments: L. Hsiung, J. Florando, M. Leblanc

Visualization: R. Cook

Dynamic of Metals project at LLNL

Funded by NNSA ASC Program

An accurate experimentally validated predictive model for metal strength under extreme conditions of pressure, temperature and strain rates

The premise: compute strength directly as a result of the underlying

atomistic mechanisms of material response

The means: multiscale simulations of material response

A Molecular Dynamics simulation on ASC White

F. Abraham, M. Duchaineau et al. (2001)

Coarse-grained approach of Dislocation Dynamics

"Crystals are like people, it's their defects that makes them interesting"

Understand and quantify how each line defect (a dislocation) responds to stress, temperature and pressure

Assemble a simulation of many interacting lines to understand how collective motion of dislocations defines material strength

ParaDiS project (2001 – present)

Para-llel Di-slocation S-imulator

DD challenges

extreme computational cost - tens of millions of flops/DOF
handling of the evolving topology of dislocation networks
extreme spatial and temporal heterogeneity – load balancing
etc

ParaDiS code:

fully parallel, efficient dynamic load balancing
good scaling on massively parallel computers (Thunder, BG/L)
orders of magnitude larger and longer simulations
first ever meaningful simulations of crystal strength

Multiple slip causes many-body dislocation reactions *Multi-junctions*

M-junctions hold dislocation strongly tie together enhancing the rate of dislocation multiplication

Existence of multi-junctions is experimentally verified

Multi-junctions have a unique TEM signature that allows them to be distinguished from other dislocation arrangements

Multi-junctions are not rare and may occur frequently during certain plastic processes

Multi-junctions matter: orientation dependence of strain hardening in BCC metals

Experimental Observations

Simulation Results

With ParaDiS we are able to investigate the microstructural origins of this behavior

Do m-junctions matter for strain hardening?

Yes, they do

Growth of m-junction network

Movie by Rich Cook

ParaDiS connects dislocation physics to material strength

Overcomes computational limits through massively parallel computing

Enables discovery science

A computational laboratory for investigations of the origins of material strength

A virtual in situ microscope for observations of microstructural causes of strength

Extra slides

Atomistic simulations confirm the mechanism

Conjugate gradient relaxation produces a multi-junction

Multi-junctions are strong obstacles to dislocation motion that are not easily overcome

Multi-junctions are 4x stronger than common binary junctions

Multi-junctions act as regenerative sources of dislocation multiplication

Existence of multi-junctions is experimentally verified

Multi-junctions have a unique TEM signature that allows them to be distinguished from other dislocation arrangements

Multi-junctions are not rare and may occur frequently during certain plastic processes